well-goknown/vendor/github.com/andybalholm/brotli/matchfinder/m4.go
2024-10-12 16:50:18 -04:00

308 lines
8.2 KiB
Go

package matchfinder
import (
"encoding/binary"
"math/bits"
"runtime"
)
// M4 is an implementation of the MatchFinder
// interface that uses a hash table to find matches,
// optional match chains,
// and the advanced parsing technique from
// https://fastcompression.blogspot.com/2011/12/advanced-parsing-strategies.html.
type M4 struct {
// MaxDistance is the maximum distance (in bytes) to look back for
// a match. The default is 65535.
MaxDistance int
// MinLength is the length of the shortest match to return.
// The default is 4.
MinLength int
// HashLen is the number of bytes to use to calculate the hashes.
// The maximum is 8 and the default is 6.
HashLen int
// TableBits is the number of bits in the hash table indexes.
// The default is 17 (128K entries).
TableBits int
// ChainLength is how many entries to search on the "match chain" of older
// locations with the same hash as the current location.
ChainLength int
// DistanceBitCost is used when comparing two matches to see
// which is better. The comparison is primarily based on the length
// of the matches, but it can also take the distance into account,
// in terms of the number of bits needed to represent the distance.
// One byte of length is given a score of 256, so 32 (256/8) would
// be a reasonable first guess for the value of one bit.
// (The default is 0, which bases the comparison solely on length.)
DistanceBitCost int
table []uint32
chain []uint16
history []byte
}
func (q *M4) Reset() {
for i := range q.table {
q.table[i] = 0
}
q.history = q.history[:0]
q.chain = q.chain[:0]
}
func (q *M4) score(m absoluteMatch) int {
return (m.End-m.Start)*256 + (bits.LeadingZeros32(uint32(m.Start-m.Match))-32)*q.DistanceBitCost
}
func (q *M4) FindMatches(dst []Match, src []byte) []Match {
if q.MaxDistance == 0 {
q.MaxDistance = 65535
}
if q.MinLength == 0 {
q.MinLength = 4
}
if q.HashLen == 0 {
q.HashLen = 6
}
if q.TableBits == 0 {
q.TableBits = 17
}
if len(q.table) < 1<<q.TableBits {
q.table = make([]uint32, 1<<q.TableBits)
}
e := matchEmitter{Dst: dst}
if len(q.history) > q.MaxDistance*2 {
// Trim down the history buffer.
delta := len(q.history) - q.MaxDistance
copy(q.history, q.history[delta:])
q.history = q.history[:q.MaxDistance]
if q.ChainLength > 0 {
q.chain = q.chain[:q.MaxDistance]
}
for i, v := range q.table {
newV := int(v) - delta
if newV < 0 {
newV = 0
}
q.table[i] = uint32(newV)
}
}
// Append src to the history buffer.
e.NextEmit = len(q.history)
q.history = append(q.history, src...)
if q.ChainLength > 0 {
q.chain = append(q.chain, make([]uint16, len(src))...)
}
src = q.history
// matches stores the matches that have been found but not emitted,
// in reverse order. (matches[0] is the most recent one.)
var matches [3]absoluteMatch
for i := e.NextEmit; i < len(src)-7; i++ {
if matches[0] != (absoluteMatch{}) && i >= matches[0].End {
// We have found some matches, and we're far enough along that we probably
// won't find overlapping matches, so we might as well emit them.
if matches[1] != (absoluteMatch{}) {
if matches[1].End > matches[0].Start {
matches[1].End = matches[0].Start
}
if matches[1].End-matches[1].Start >= q.MinLength && q.score(matches[1]) > 0 {
e.emit(matches[1])
}
}
e.emit(matches[0])
matches = [3]absoluteMatch{}
}
// Calculate and store the hash.
h := ((binary.LittleEndian.Uint64(src[i:]) & (1<<(8*q.HashLen) - 1)) * hashMul64) >> (64 - q.TableBits)
candidate := int(q.table[h])
q.table[h] = uint32(i)
if q.ChainLength > 0 && candidate != 0 {
delta := i - candidate
if delta < 1<<16 {
q.chain[i] = uint16(delta)
}
}
if i < matches[0].End && i != matches[0].End+2-q.HashLen {
continue
}
if candidate == 0 || i-candidate > q.MaxDistance {
continue
}
// Look for a match.
var currentMatch absoluteMatch
if binary.LittleEndian.Uint32(src[candidate:]) == binary.LittleEndian.Uint32(src[i:]) {
m := extendMatch2(src, i, candidate, e.NextEmit)
if m.End-m.Start > q.MinLength && q.score(m) > 0 {
currentMatch = m
}
}
for j := 0; j < q.ChainLength; j++ {
delta := q.chain[candidate]
if delta == 0 {
break
}
candidate -= int(delta)
if candidate <= 0 || i-candidate > q.MaxDistance {
break
}
if binary.LittleEndian.Uint32(src[candidate:]) == binary.LittleEndian.Uint32(src[i:]) {
m := extendMatch2(src, i, candidate, e.NextEmit)
if m.End-m.Start > q.MinLength && q.score(m) > q.score(currentMatch) {
currentMatch = m
}
}
}
if currentMatch.End-currentMatch.Start < q.MinLength {
continue
}
overlapPenalty := 0
if matches[0] != (absoluteMatch{}) {
overlapPenalty = 275
if currentMatch.Start <= matches[1].End {
// This match would completely replace the previous match,
// so there is no penalty for overlap.
overlapPenalty = 0
}
}
if q.score(currentMatch) <= q.score(matches[0])+overlapPenalty {
continue
}
matches = [3]absoluteMatch{
currentMatch,
matches[0],
matches[1],
}
if matches[2] == (absoluteMatch{}) {
continue
}
// We have three matches, so it's time to emit one and/or eliminate one.
switch {
case matches[0].Start < matches[2].End:
// The first and third matches overlap; discard the one in between.
matches = [3]absoluteMatch{
matches[0],
matches[2],
absoluteMatch{},
}
case matches[0].Start < matches[2].End+q.MinLength:
// The first and third matches don't overlap, but there's no room for
// another match between them. Emit the first match and discard the second.
e.emit(matches[2])
matches = [3]absoluteMatch{
matches[0],
absoluteMatch{},
absoluteMatch{},
}
default:
// Emit the first match, shortening it if necessary to avoid overlap with the second.
if matches[2].End > matches[1].Start {
matches[2].End = matches[1].Start
}
if matches[2].End-matches[2].Start >= q.MinLength && q.score(matches[2]) > 0 {
e.emit(matches[2])
}
matches[2] = absoluteMatch{}
}
}
// We've found all the matches now; emit the remaining ones.
if matches[1] != (absoluteMatch{}) {
if matches[1].End > matches[0].Start {
matches[1].End = matches[0].Start
}
if matches[1].End-matches[1].Start >= q.MinLength && q.score(matches[1]) > 0 {
e.emit(matches[1])
}
}
if matches[0] != (absoluteMatch{}) {
e.emit(matches[0])
}
dst = e.Dst
if e.NextEmit < len(src) {
dst = append(dst, Match{
Unmatched: len(src) - e.NextEmit,
})
}
return dst
}
const hashMul64 = 0x1E35A7BD1E35A7BD
// extendMatch returns the largest k such that k <= len(src) and that
// src[i:i+k-j] and src[j:k] have the same contents.
//
// It assumes that:
//
// 0 <= i && i < j && j <= len(src)
func extendMatch(src []byte, i, j int) int {
switch runtime.GOARCH {
case "amd64":
// As long as we are 8 or more bytes before the end of src, we can load and
// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
for j+8 < len(src) {
iBytes := binary.LittleEndian.Uint64(src[i:])
jBytes := binary.LittleEndian.Uint64(src[j:])
if iBytes != jBytes {
// If those 8 bytes were not equal, XOR the two 8 byte values, and return
// the index of the first byte that differs. The BSF instruction finds the
// least significant 1 bit, the amd64 architecture is little-endian, and
// the shift by 3 converts a bit index to a byte index.
return j + bits.TrailingZeros64(iBytes^jBytes)>>3
}
i, j = i+8, j+8
}
case "386":
// On a 32-bit CPU, we do it 4 bytes at a time.
for j+4 < len(src) {
iBytes := binary.LittleEndian.Uint32(src[i:])
jBytes := binary.LittleEndian.Uint32(src[j:])
if iBytes != jBytes {
return j + bits.TrailingZeros32(iBytes^jBytes)>>3
}
i, j = i+4, j+4
}
}
for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
}
return j
}
// Given a 4-byte match at src[start] and src[candidate], extendMatch2 extends it
// upward as far as possible, and downward no farther than to min.
func extendMatch2(src []byte, start, candidate, min int) absoluteMatch {
end := extendMatch(src, candidate+4, start+4)
for start > min && candidate > 0 && src[start-1] == src[candidate-1] {
start--
candidate--
}
return absoluteMatch{
Start: start,
End: end,
Match: candidate,
}
}